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The single most important random variable type is the Normal (aka Gaussian) random variable, parametrized
by a mean (µ) and variance (σ2). If X is a normal variable we write X ∼ N(µ,σ2). The normal is important
for many reasons: it is generated from the summation of independent random variables and as a result it
occurs often in nature. Many things in the world are not distributed normally but data scientists and com-
puter scientists still model them as Normal distributions anyways. Why? Because it is the most entropic
(conservative) distribution that we can apply to data with a measured mean and variance.

0.1 Properties

The Probability Density Function (PDF) for a Normal is:
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By definition a Normal has E[X ] = µ and Var(X) = σ2.

If X is a Normal such that X ∼ N(µ,σ2) and Y is a linear transform of X such that Y = aX +b then Y is also
a Normal where Y ∼ N(aµ +b,a2σ2).

There is no closed form for the integral of the Normal PDF, however since a linear transform of a Normal
produces another Normal we can always map our distribution to the “Standard Normal” (mean 0 and variance
1) which has a precomputed Cumulative Distribution Function (CDF). The CDF of an arbitrary normal is:
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Where Φ is a precomputed function that represents that CDF of the Standard Normal.

A concrete example of random variable that is treated as Gaussian is the number of roses on a rosebush. For
a species of roses grown in Lake Naivasha, Kenya it has been observed that the number of roses on a mature
bush is X and it is distributed as X ∼ N(µ = 4,σ2 = 2). Here is a graphical representation of the probability
density function for number of roses:



What is the probability that a bush is a “super-bush” meaning it has more than 6 roses?

P(X > 6) = 1−FX (6)
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Recall that: F(x) = Φ
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≈ 1−Φ(1.414)
≈ 0.079

Projection to Standard Normal

For any Normal X we can define a random variable Z ∼ N(0,1) to be a linear transform
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Using this transform we can express FX (x), the CDF of X , in terms of the known CDF of Z, FZ(x). Since the
CDF of Z is so common it gets its own Greek symbol: Φ(x)
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The values of Φ(x) can be looked up in a table. We also have an online calculator.

Example 1

Let X ∼ N(3,16), what is P(X > 0)?
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What is P(2 < X < 5)?
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Example 2

You send voltage of 2 or -2 on a wire to denote 1 or 0. Let X = voltage sent and let R = voltage received.
R = X +Y , where Y ∼ N(0,1) is noise. When decoding, if R≥ 0.5 we interpret the voltage as 1, else 0. What
is P(error after decoding|original bit = 1)?

P(X +Y < 0.5) == P(2+Y < 0.5) = P(Y <−1.5) = Φ(−1.5) = 1−Φ(1.5)≈ 0.0668
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